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1. Overview 
The focus of work under this contract has been on the representation and 

evaluation of plans, accounting for uncertainty of knowledge about the state of the 
world and about the outcomes of actions.   

Action Networks:  In the first half of this contract, our proposed plan 
representation was Action Networks, a language for representing actions and their 
effects based on Bayesian Networks.  The crucial aspect of this representation is that 
definition of each action is factored according to what aspects of the world state that 
action depends upon or changes.  This factorization is exploited to make plan 
evaluation, explanation and generation computationally feasible.  Our initial conception 
of Action Networks has been refined to include a more expressive factorization 
technique, and this new definition has been used as the basis for an algorithm for 
automated plan generation.   We have pursued two forms of plan metrics for plans 
represented Action Networks: plan evaluation (prediction of expected outcomes) and 
plan explanation (identification of the important differences between two plans with 
respect to some prediction).  We have developed algorithms for both types of metrics. 

We investigated the application of these ideas to Air Campaign Planning.   One 
feature of the Air Campaign Planning problem which has not been reflected in our work 
is the hierarchical nature of plans and of planning.   Action Networks are applicable to 
“tactical level” actions (such as the expected damage resulting from the employment of a 
particular aircraft and weapon-type against a particular target, however they do not 
make use of any hierarchical information, such as is used in the strategy-to-task 
formalism.  We believe that adding hierarchical structure will both extend the usefulness 
of the Action Network formalism and also provide further computational leverage for 
evaluation and explanation.  Accordingly, we expect that adding hierarchical structure 
will be a major focus of the second half of this contract. 

CAT Analysis and the Effects Based Operations (EBO) Jumpstart 
Demonstration:  In the second half of this contract, we focused our efforts on the 
development of a suite of analysis tools in support of AFRL’s Campaign Assessment 
Tool (aka Causal Analysis Tool or CAT).  We developed three tools: two standalone 
Visual Basic prototypes and an ActiveX component that was embedded into CAT itself.  
Each system was intended to provide supporting analysis of air campaign plans, 
including the analysis of the value of observing new information and the value of 
controlling key uncertainties.  The former is intended to support development of 
intelligence collection plans.  The latter is intended to support identification of key 
objectives to achieve during the campaign.  The plan representation used was an 
atemporal representation of the causal relationships in an effects-based air campaign 
plan, relating low level objectives, such as destroying a target to progressively higher 
objectives. 

In the final phases of the program, we developed software to support a larger 
EBO Jumpstart Demonstration.  In this demo, AFRL integrated CAT, CATView 
(Rockwell’s activeX component), the Joint Targeting Toolkit and a University of Oregon 
Air Campaign scheduler.  CAT was used to develop causal models relating target sets to 
high level objectives along with timing for hitting those objectives.  JTT was used to 
designate specific targets within each target set.  The resulting target sets were passed to 
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the air campaign scheduler, which assigned specific aircraft/weapon pairs to targets.  
Finally, CATView performed analysis to determine the probability that this plan would 
result in a successful outcome, suggested intel to collect to reduce plan uncertainty, and 
provided an analysis of the weak points in the plan.      

The following sections detail accomplishments in each of the tasks of this contract.   

Tasks 

1.1 Action Networks 

The originally proposed Action Network representation defined actions as 
fragments of a Bayesian Network which described the effects of actions on fluents (state 
variables).  We have refined this definition to explicitly specify the context-dependence 
of action effects.  Adding this explicit additional representation provides for more 
economy in the action representation: the “size” of an action (in terms of the number of 
probabilities required to describe that action) can be substantially reduced in many 
cases, which in turn provides computational leverage and also makes the specification of 
actions easier.  This tree-factored representation for action under uncertainty has 
received considerable attention in the academic Artificial Intelligence community. 
(Figures of simple actions in this representation can be found in the attached 
documents.) 

We have also experimented with a cyclic action representation (a Bayesian 
network with directed cycles), and have found this representation to be useful in 
structure-based plan generation. 

Action networks represent “primitive” actions, i.e. actions which do not have 
any further decomposition.  A plan is a sequence of actions, which is represented by a 
single Bayesian Network composed of the network fragments for each action “pasted 
together” in temporal order.  This representation is ideal for simulation or prediction, 
but did not have any obvious analogue to the hierarchical representation specified by 
the Strategy-to-Task formalism.  We have developed a correspondence between 
Strategy-to-Task and Action Networks, wherein the lowest level actions (“strategies”) in 
a Strategy-to-Task plan correspond to primitive actions in an Action Network.  Higher-
level actions in the Strategy-to-Task plan are mapped to sets of lower-level actions, but 
do not require any explicit representation in the Action Network.  This mapping does 
not intrinsically change the functionality of the Action Network, but the added structure 
can be exploited for plan manipulation and plan metrics. 

Issues that have arisen from this mapping are: 

• Strategy-to-Task plans do not require an ordering over actions, while Action 
Networks require a complete ordering. 

• Action specifications in Action Networks have been required to supply 
complete descriptions of action effects, which is likely to be unrealistic in 
many cases.   

• We intend to address these issues in the second half of the contract. 
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1.2 Plan Metrics 

Literature on air campaign planning refers to plan metrics as measures which 
determine some aspect of quality of a plan, or which summarize several aspects into 
some overall score.  Our initial intent was to determine some specific metrics and to 
represent them as utility in Action Networks (thereby allowing a dynamic-programming 
approach to plan optimization).  We are indeed able to specify utility in Action 
Networks, simply by incorporating utility nodes into the underlying Bayesian network 
(i.e. making the network an Influence Diagram).  Thus, we are able to implement metrics 
such as probability of goal achievement, or cost or risk minimization. 

However, our reading of air campaign literature and review of other work in the 
ARPI initiative has convinced us that a more valuable service for us to perform is in the 
area of plan understanding.  There are many approaches to plan understanding, but the 
approaches we have adopted are plan prediction (e.g. simulation) and plan explanation 
(pinpointing which decisions have the most significant influence on some prediction, 
and explaining why).  Both prediction and explanation have natural interpretations in 
Action Networks, and both can be defined in terms of evaluation of the underlying 
Bayesian network.  Since Bayesian network evaluation is in the worst-case intractable, 
we have focused considerable energy on heuristic methods for faster evaluation, 
especially for approximate or incremental evaluation. 

One of the early results of this research was a new algorithm for evaluation 
called “k-predict.”  “K-predict” uses a novel combination of techniques: an 
approximation technique based on the kappa calculus is used to guess an efficient 
ordering of cutset instantiations for incremental evaluation of a Bayesian network.  A 
prototype implementation of k-predict performed quite well on a number of test cases.   

As a next step, we decided to combine k-predict with “Localized Partial 
Evaluation,” another heuristic incremental evaluation technique which we believe will 
work well in complimentary cases to k-predict.  In attempting to implement the 
combination of algorithms, we have designed a much more general architecture for 
Bayesian network evaluation than has previously been available.  Almost every 
optimization, heuristic, or approximation technique which has been published for 
Bayesian networks can be expressed within this architecture.  We feel that a library 
based on this architecture will serve as a very robust basis for further research into 
Bayesian network evaluation techniques.  The implementation of this library is 
approximately half complete. 

Plan prediction in Action Networks can be defined quite simply in terms of 
evaluation of Bayesian networks.  Namely, we define plan prediction to be either the 
estimation of the probability of some events, or the expected value of some quantity, 
given a plan.  “What-if” analysis can be supported by asserting that certain events occur 
(i.e. entering them as observations in the Bayesian network). 

Plan explanation is somewhat more complicated.  Several researchers have 
explored explanation in Bayesian networks, mostly in the context of diagnostic 
reasoning in medical systems.  The general idea of explanation in Bayesian networks is 
to identify some subset of either the nodes or the paths in the network which have the 
most impact on some result of interest, and to also “tell  a story” about how that 
influence is carried out (i.e. “filling a cup causes the cup to be full which increases the 
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chance that it may spill”).  We have investigated this literature and found that while the 
general framework is applicable, there are a number of shortcomings in published work 
with respect to explanation of plans (as opposed to diagnostic systems).  We have 
developed a modified criterion for explanation in Bayesian networks that is appropriate 
for explaining influences in plans, and most particularly, for explaining the differences 
between two plans.  We are developing an algorithm based on this new criterion that 
should also be more efficient than previously-published algorithms. 

The algorithm that we have been developing to date is based on “flat” Action 
Networks.  Additionally, we are working on an algorithm that uses the hierarchy in a 
Strategy-to-Task plan to generate more compact and useful explanations. 

1.3 Plan Generation 

We have constructed an algorithm which we call structure-based plan 
generation, which uses Action Networks to construct plans.  Unlike traditional AI 
planning systems, the result of structure-based plan generation is a compact 
representation of all possible plans of a given length which can be used to achieve a goal.  
Structure-based plan generation is able to produce this compact set by exploiting the 
structure of actions as defined in Action Networks.  We have compared the power of 
this planning paradigm with the power of more traditional AI approaches (see attached 
documents).  A prototype implementation of this algorithm has been written in prolog. 

An additional result from our investigation of structure-based plan generation is 
the application of similar ideas to other graph algorithms, for example the construction 
of join trees in Bayesian network evaluation.  This work resulted in a paper published in 
AAAI’96. 

1.4 Plan Analysis 

We developed a COM component (called CATView) that performed several 
kinds of analysis on effects-based air campaign plans.  The input for the system 
consisted of a Bayes net encoding the causal structure of the air campaign plan and a 
schedule of air actions. 

Analysis techniques supported included: 

• Value of information analysis:  Determine the most important variables to 
observe to reduce the uncertainty in a specific objective. 

• Control value analysis:  Determine the most important variables to 
control to improve the probability of a selected objective. 

• Temporal projection:  Determine the probability that a goal will be 
satisfied as a function of time given the schedule.   

• End-state analysis:  Determine the probability of various goals and 
subgoals at the end of an air campaign given the schedule. 
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1.5 Technology Integration Experiments 

We have collaborated informally with the Uncertainty Cluster (University of 
Washington, Brown, Rockwell) on uncertainty, and with SRI and Klein on plan metrics.  
For the EBO Jumpstart portion of this program, we worked extensively with the 
University or Oregon (scheduling and utility-directed search), Advanced Computing 
Concepts (probability concepts for JTT) and Dr John Lemmer and Mr Simon Vogel of 
AFRL/IFTB on interfaces to the Campaign Assessment Tool.   

2. Plan Analysis 
In this section, I will discuss the analysis tools that were developed for 

CATView, starting with value of information and ending with the value of control. 

2.1 Value of Information (VOI) 

In order to prioritize ISR objectives, we use the value of information [Howard].  In 
decision theory, the value of information is the difference in expected utility between a 
decision problem in which the observation is observed prior to making a decision and 
one in which it is not.  The Expected Value of Perfect Information is 

{ } { } ( )

{ }

max | ( , )

max ( , )

AO X

A X

EVPI P O P X O U A X C O

P X U A X

  
= −  

  
−

∑ ∑

∑

 

where X is the unknown state of the world, A is the proposed decision, O is a 
potential observation, C(O) is the cost of observing O and U(A,X) is Cost or value of 
choosing action A if X is true.   

If C is equal to zero, the EVPI is always greater than or equal to zero.  The EVPI 
is equal to zero only if the observation has no effect on the decision.  One instance where 
this is true is when O is marginally independent of X.  In this case, 
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2.2 Mutual Information 

In order to use EVPI to assess the value of information, we need to assess both the space 
of decisions and a utility function for each situation/decision pair.  Although this is 
often done for war gaming problems, in practice it is very difficult to assess the utility 
function or to a priori determine the full set of decision alternatives. 

Our goal in using VOI is to provide an ordering over possible information collection 
activities, as well as to provide a metric to indicate the relative importance of the 
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observation.  Empirically, almost any metric on P{X} can be used to provide reasonable 
orderings on the relative value of observing different variables [Ben-Bassat]. 

The metric that we use is the mutual information between one or more objective 
variables and the observation variable. The mutual information between x and y is the 
expected change in the entropy of x given that y is observed. Entropy, in turn, is a 
measure of the amount of "uncertainty" or "randomness" in a random variable. Thus, 
mutual information measures the expected change in the amount of uncertainty in the 
variable. 

 
Entropy is given by the following formula: 

{ } { }∑−=
x

xPxPxH lg)(  

If x is certain, { }xP  will be 0 or 1 for all values of x and the entropy will be 0.1 
If x is uncertain, ( )xH  will be greater than zero since { } 01 ≥> xP  and { } 1=∑

x
xP . 

The following figure shows the entropy of a binary variable y as the probability that y =T 
is varied between 0 and 1 (the entropy has been scaled to reach a peak of 1.0 when 
{ } 5.0== TyP ). 
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Entropy can be calculated for joint distributions, too.  The entropy of the joint 

distribution between x and y is  
{ } { }∑−=
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,
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The mutual information for x and y is given by: 
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(L'Hopital's rule). 
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( ) ( ) ( ) ( )yxHyHxHyxI ,, −+= . 
 
Interpreting Mutual Information 

 
Mutual information has a number of interpretations.  First of all, it can be derived by 

considering the expected change in the entropy of x given information about y: 
 

( ) ( )[ ] ( ) { }

( ) { } { } { }

( ) { } { }
{ }

( ) { } { } { } { }

( ) { } { } { } { }

( ) ( ) ( )yHyxHxH

yPyPyxPyxPxH

yPyxPyxPyxPxH

yP
yxPyxPxH

yxPyxPyPxH

yxHyPxHyxHxHE

yxyx

yxyx

yx

y x

y
y

+−=

−+=

−+=

+=

+=

−=−

∑∑

∑∑

∑

∑ ∑

∑

,                                 

lg,lg,                                 

lg,,lg,                                 

,lg,                                 

|lg|                                  

)|(|

,,

,,

,  

 
Equivalently, the mutual information is the expectation of the Kullback-Leibler 

divergence between the distribution of x after observing y and the distribution of x before 
observing y.  

 
The Kullback-Leibler divergence between distributions P and Q is 
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Properties of Mutual Information 
 
Mutual information is an appealing measure of the value of an observation y for reducing 

the uncertainty in x.  When x and y are independent, ( ) 0, =yxI  since 
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If y is equal to x (y provides perfect information about x), then the mutual information 
between x and y is equal to the reduction in the uncertainty in x, H(x), when y is observed: 
( ) ( )xHyxI =, . This is easy to see: 
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2.3 Calculating Mutual Information in CATVIEW 

 
In order to calculate the mutual information between x and every possible observation yi 

in the knowledge base, we need the marginal distributions for x and each yi and the conditional 
distribution for each yi given each of the values for x.  

 
A Bayesian network is a tool for computing the probability distribution for a query 

variable, q, given the values for evidence variables E. In order to compute the conditional 
distribution { }xyP i |  for a given value v of x, we set x to v in the belief network, update the 
network, and read off { }xyP i |  from the marginal probability distribution stored in node iy . Note 
that we can compute the marginal probability distribution { }xyP i |  for all of the observation 
nodes,{ }nyy ,,1 Λ given x in a single pass through the network. If we store a running total for the 
joint entropy of x and iy  on each node iy , we can compute the entropy by accumulating the 
entropy of iy  given x weighted by the prior probability of iy . That is, we  

1. set ( ) 0, ←xyH i   for each node. 
2. accumulate ( ) { }xPxyH i |  for each 'instantiation' of x, that is: 

loop for k = the values of x, 
     set x = k in the belief network and update. 
     loop for i = the observable variables in the belief network,  
             let ( ) ( ) { } { } { } { }( )∑−←

iy
iiii xyPxPxyPxPxyHxyH |lg|,, . 

2.4 Calculating VOI for multiple observations. 

The mutual information for multiple observations does not sum.  That is:   

( ) ( ) ( ), ( , ) , ,I x y z I x y I x z≠ +  
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This is an important issue because when we are planning the use of ISR assets, 
we need to consider the impact of all of the information collected by the platform on a 
wide range of objectives.  The sums of the individual mutual information terms is 
neither an upper bound or a lower bound on I(x, (y,z)).  The following example 
demonstrates why the sum is not an upper bound: suppose that x is equal to y xor 
(exclusive or) z and both y and z have a prior probability of 0.5.  Both y and z are 
marginally independent of x, so both ( ), 0I x y =  and ( ), 0I x z = , yet knowledge of both 

y and z provides perfect information about x ( ), ( , ) 1I x y z = .  The sum is not a lower 
bound either.  Suppose that either y or z provide perfect information about x and x has a 
prior probability of 0.5. Then ( ) ( ) ( ), , , ( , ) 1I x y I x z I x y z= = = . 

It requires time exponential in the number of observations to compute mutual 
information exactly.  Fortunately, we have found that simulation can be used to derive 
an effective polynomial epsilon/delta approximation.   

Algorithm:  Given O, a vector of observation variables and x, a variable of 
interest, we want to develop an estimate Î  such that 

( ) ( ){ }ˆ, , 1NP I x O I I x Oε ε δ− ≤ ≤ − ≥ − .   

Let 
2

max
2

4 2ln  VN
e δ

 
=  
 

 

  and  ˆ 0I =  

 

For i = 1 to N 

 For j = 1 to |O| 

  Draw o
j
 from P{O

j
 | o

1
 ,…,o

j-1
}2 

 next j 

 { }( )1
ˆ ˆ | , , OI I H P X o o← + K  

 next i 

 ˆ ˆ /I I N←  

 

The following figures illustrate the results of a test of the algorithm on a 
diagnostic Bayes net with approximately 30 observations.   

                                                           
2 These probabilities are all computed using the Bayes net. 
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 For this example, we used an epsilon of 0.4 and a delta of 0.1.  N = 76 

iterations.  The figure on the left shows the VOI computed for 1 through 12 observations 
for both the exact algorithm (diamonds) and the approximation algorithm (squares).  
The figure on the right shows the computation time on a 450 Mhz Pentium processor.  
Note that the computation time for the approximation algorithm is approximately 
constant (0.3 seconds) regardless of the number of observations considered.  The 
computation time for the exact algorithm increases exponentially with the number of 
observations, rising to ~200 seconds to compute the VOI for 12 observations.  In our 
tests, we computed the VOI for all observations in the knowledge base (see below) in 
under a half second. Computing exact VOI would have required billions of bayes net 
propagations.  
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This technique shows that it is practical to use value of information to evaluate 
the utility of full ISR plans.   

2.5 Value of Control 

Value of control measures the extent to which controlling and uncertainty will 
improve a plan.  The value of control is the difference in expected utility between a 
decision scenario in which a variable is set vs. one where it is treated as an uncertainty.  
Since our objective is to increase the probability of some objective, the value of control 
for an uncertainty is the amount by which it can increase the probability of a selected 
objective.  In order to compute the value of control, we need to edit the structure of the 
network.   

Iterating over the values for a node X and then selecting the value that has the 
largest effect on the selected objective Obj, does not work.  In the figure below, note that 
setting X (striped) both influences the probability of downstream nodes, but also 
changes the probability of upstream nodes, such as A, by acting as a partial observation 
for their value.   

Obj

X

A

Obj

X

A

 
What we need to do is to break the arc between X and its parents before 

computing the value of control (figure below left).  Since interleaving network edits and 
inference is expensive for most bayes net algorithms, we adopted a canonical form 
where we use an auxillary variable (black) to effectively disconnect each control variable 
from its parents.  Call this auxillary variable “A”.  The conditional probabilities for 
P{X|pa(X), A } when A is true is just equal to the original conditional probability table.  
When A is false, the probability for X is not a function of its parents (for example, P{X} 
can be set to a uniform distribution).   
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Obj
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2.6 Implementation 

The EBO Jumpstart prototype was implemented as an ActiveX component using 
Microsoft Visual Basic 6.0.  The interface is shown below. 

 
The component occupies the right 2/3 of the screen (the remaining items on the 

screen are menus and dialogs belonging to the AFRL Campaign Assessment Tool).  The 
left half of the tool presents alternative views of the entire plan.  The pane on the right 
displays properties or analyses for nodes selected in the selection pane. 

The Selection Pane presented four alternative views: 

Selection Pane Property  
Pane 
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• Probability Tree View:  A tree of all actions and objectives with 
probabilities. 

• Alphabetic View:  an alphabetic list of all actions,  

• Gantt View:  a Gantt chart showing the current schedule and schedule 
constraints.  

• Time Line:  a table that allows the user to sort all actions by start or end 
time.   

The Property Pane presented three analysis tools and two properties pages. 

• Properties:  presents all information associated with the definition of the 
action. 

• Journal:  Presents a log of all observations made thus far. 

• Key Observations:  Show a list of the key observations to make in order to 
maximally reduce uncertainty in the selected variable.  The selected 
variable is always at the head of the list to show the value of a perfect 
observation. 

• Key Actions:  Show a list of the key places to intervene in order to 
maximally increase the probability of success for the selected objective. 

• Graph:  Show the probability of success for the selected objective as a 
function of time. 

2.6.1 Selection Pane 
All of the tools in the selection pane allow the user to select and set properties for 

selected variables.  When a variable is selected, the tool computes and caches various 
analyses and displays the results in the Properties Pane (see below).  As observations are 
made or actions are executed, the user can enter the results of those actions and 
observations and immediately see the impact on the probability of success for the plan.   

  
The Probability Tree View presents the tree of actions from the highest level 

objective (Acede to Demands) all of the way down to the target level.  The probability 
numbers in the tree view show the projected probability of success for each objective 
given the current schedule.  Red, Yellow and Green stop lights were set depending on 
the probability of the objective, allowing the user to quickly drilldown to determine the 
source for an execution or planning problem.    All of the figures in this section use the 
same model, a causal model of the Kosovo campaign assembled by Dr. Maris “Buster” 
McCrabb for the Effects Based Operations Jumpstart demonstration.  The overall 
objective of the plan is to get Milosevic to accede to UN demands.  If he does not, the 
plan will be to put pressure on him by stripping him of air sovereignty.  If this does not 
work, the plan is to turn out the lights.   
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The Gantt View presented the schedule and constraints and allows the user to 

adjust temporal constraints.  White bars represent the full temporal extent of actions or 
sets of actions.  The red bars represent user-settable constraints and the black bars 
represent constraints that are implied by other constraints.  In the example below, the 
commander is attempting to force the scheduler to destroy the power plants at a 
particular time during the mission.  

 

2.6.2 The Properties Pane 
The Properties Pane shows properties or analyses for the selected action or 

objective.   

Key Actions illustrates the result of the value of control computations.  For this 
analysis the user selected “Destroy C2” as the objective.  The display lists all of the 
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variables that can increase the probability that C2 is destroyed in order of increasing 
effect on this variable.  The number to the left of each variable is the increase in 
probability due to accomplishing the action.  For example, if you could somehow 
destroy the enemy’s ability to communicate, you would increase the probability that C2 
were destroyed from 0.2615 to 1.0, a gain of 0.7385.  On the other hand, if you destroyed 
just the generator halls, you would increase the probability that C2 was destroyed by 
0.1667.   

 
Key Observations (next page) shows the value of information for all variables 

that reveal information about the selected objective.  The units for VOI are in bits of 
entropy.  If you could directly observe whether C2 were destroyed, this fact would 
provide 0.8289 bits of information.  On the other hand, if you just observed whether 
electrical power was disrupted, this would decrease your uncertainty in whether C2 
were destroyed by 0.1601 bits.   

Note that fairly indirect observations provide data on whether C2 is destroyed.  
For example, knowing whether Milosevic acceded to UN demands provides evidence 
that the C2 system was, in fact, destroyed.   

The Key Observations panel is a tree.  Some observations are only relevant if 
other variables are observed.  For example, in this model, determining whether the SAM 
system has been destroyed reveals information about “Destroy C2” IF we observe 
whether Milosevic has acceded to UN demands.  
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The final pane (next page) shows the projected probability of success for an 
objective (in this case “Accede to Demands” as a function of the current air campaign 
schedule.  This graph shows the cumulative effect of all elements of the air campaign 
plan over time. 
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3. Action Networks 
The action networks portion of the contract is fully documented in previously 

published papers. 

Draper, Denise, “Plan Explanation and Explanation in Bayesian Networks”, report, 
July 1996. 

Boutilier, Craig and Goldszmidt, Moises, “The Frame Problem and Bayesian 
Network Action Representations”, in the Proceedings of the Canadian 
Conference for Artificial Intelligence, 1996. 

Boutilier, Craig, Friedman, Nir, Goldszmidt, Moises and Koller, Daphne, “Context-
Specific Independence in Bayesian Networks”, in Proceedings of the Twelfth 
Conference on Uncertainty in Artificial Intelligence,  pp 115-132, 1996. 

Darwiche, Adnan, “Utilizing Knowledge-Base Semantics in Graph-Based 
Algorithms”, in the Proceedings of the Thirteenth National Conference on 
Artificial Intelligence, pp 607-613, 1996. 
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Background Study: Plan Explanation and 
Explanation in Bayesian Networks 

Denise L. Draper 
July 1996 

4. Plan Explanation 

4.1 What is Plan Explanation? 

You’ve got a plan, say an air attack plan including target selection down to support 
operations to get everything to the right place at the right time.  How does the plan fit together?  
If some particular operation is not completed on time, what other activities will be delayed?  
What effect would that delay have on their success, or on the outcome of the plan as a whole?  
Suppose a  plan evaluator tells you that the plan is fragile with respect to changing weather 
conditions.  How is it fragile?  If the weather were stormy instead of clear, which activities would 
be affected?  Or suppose part of the plan uses a particular resource—a set of transport aircraft, 
perhaps—and some other military operation also wants that resource.  Can you substitute a 
different resource, or reschedule its use, without disrupting the plan?  Why was that resource 
being used anyway? 

If we define the general subject of Plan Understanding as comprising any kind of 
procedure that helps an individual to understand a plan—how it works, how good is it, what 
happens if you change part of it—then we can distinguish two subcategories of plan 
understanding: 

1. Procedures that help an individual to understand what is in a plan: what activities are 
involved, what order do they take place in, etc.  These kinds of procedures we will call Plan 
Visualization.  A common example of a plan visualization mechanism is a Gantt chart, which 
shows the ordering of different activities. 

2. Procedures that help an individual to understand why something is part of a plan, or how a 
plan achieves certain goals, etc.  These are the kinds of procedures that we will call Plan 
Explanation.  Many formal requirements analysis or work flow models incorporate some kind 
of explanatory mechanism. 

To some extent, this dichotomy is arbitrary—any realistic use of large-scale plans will 
require both capabilities, and they will probably be inter-linked.  But answering questions about 
“why” or “how” typically involves a deeper understanding of the domain and how the entities 
involved (activities, constraints) interact with one another. 

In order to be able to explain something about a particular plan, we generally have to 
start by knowing not only what the plan is, but also what it is supposed to achieve, what 
constraints it must satisfy, etc.  Plan explanation then usually consists of determining how certain 
activities or constraints in the plan cause (or fail to cause) goals to be achieved (or required 
constraints to be satisfied, etc.).  In this regard, we can see that plan explanation is closely related 
to plan evaluation: where plan evaluation takes a plan and returns some measure of how good 
the plan is (according to some criterion), plan explanation returns (some part of) the line of 
reasoning justifying how the measurement was arrived at.3 

                                                           
3 In fact, in the field of automated diagnosis, the primary purpose for explanation is as a justification of an 

automatically generated diagnosis (which is roughly analogous to a plan evaluation).  In experiments with medical 
diagnosis systems, medical students were more likely to trust the diagnosis generated by an automated system if an 
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To reiterate, the kinds of questions that plan explanation would be used to answer are: 

• How does a plan achieve its objectives, or meet certain criteria? 

• How would a change in conditions affect a plan? 

• Why are certain activities included in a plan? 

These questions concern only a single plan.  But often we will be interested in more than 
one plan, in which case the focus usually shifts away from understanding the structure of how 
one plan works towards understanding how two plans differ, and what the consequences of 
those differences are.  In other words, we would also like to be able to answer questions such as: 

• Why is plan X better than plan Y (according to some specific evaluation criterion)? 

• Under what conditions or assumptions would plan X be better than plan Y? 

4.2 Two General Approaches to Plan Explanation 

There are two fundamentally different techniques for plan explanation.  The first is 
usually called “rationale capture,” and consists of asking the decision makers to record reasons 
for their decisions—in other words, for every decision made, record why it was made the way it 
was, the assumptions that were used, and the anticipated overall effect on the success of the plan.  
Plan explanation is then a process of sifting through the recorded rationale for those relevant to 
the question at hand. 

Another technique, employed in classic AI planning as well as in Decision Analysis, is to 
construct a formal model describing the effects of individual actions4—resources the action 
requires, how the action changes the world (which can be different in different situations), and so 
forth.  A formal model could be logical, or probabilistic, or fuzzy, etc.  Given a formal action 
model, the appropriate inference algorithm can be used to automatically infer properties of the 
plan as a whole from the properties and interactions of the individual actions that make up the 
plan. 

The information stored in rationale capture is generally less formal than the action 
models used in AI techniques.  This can be either a strength or a weakness.  The advantage of 
informality is that decision makers can put in arbitrary information that they believe will be 
useful—for example, informal rationale can address political or psychological issues that would 
be difficult or impossible to model formally.  Formal action models, in contrast, require that the 
scope and structure of the rationale be fixed in advance, and limited to those aspects that can be 
formally modeled.  Moreover, creating formal action models is a time consuming and costly task. 

On the other hand, by establishing a formal action model, it is possible to “chain 
together” information from individual actions to determine indirect effects on the plan as a 
whole.  With informal rationale this sort of combination is generally not possible to do 
accurately. 

It may be feasible to combine aspects of both approaches, either by allowing informal 
rationale in addition to a formal action model, or by constructing the formal action model in situ, 
as the plan itself is constructed.  In either case, we would expect the hybrid system to be more 
flexible, but also probably to suffer from greater inconsistencies (which could lead to erroneous 
or misleading explanations). 

                                                                                                                                                                             
explanation or rationale for the diagnosis was also given.  Probably even more important, the use of explanation also 
increased the confidence of the medical students to disagree with an automatic diagnosis, when they could see that the 
rationale did not adequately account for certain aspects of the case. [Suermondt & Cooper, 1992] 

4 We use the terms “operation” or “activity” interchangeably to refer to any part of a plan considered as a unit, 
and the term “action” to refer specifically to a formally-modeled operation or activity. 
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4.3 The Main Issue in Plan Explanation: Too Much Information 

A difficulty that arises with plan explanation techniques is restricting the amount of 
information given in the answer to a question.  The problem is that the functioning of well-
constructed plans is often very organic—every part is intimately related to many other parts.  
The entire plan may seem to be its own best explanation. 

There are a number of strategies to moderate the amount of information presented in an 
explanation: 

1. Filter out parts of the explanation that have less significant impact on the plan (for example, 
small time delays, or small probability of occurrence). 

2. If plans are hierarchical (having higher level activities which are expanded into sets of lower 
level activities), explanation can concentrate on the more abstract levels when details from 
the lower level activities are not necessary. 

3. Often, there are parts of a plan which are crucial to its success, but are also in some sense 
routine.  For example, it is crucial that a patient undergoing surgery be present at the 
hospital before the surgery, but any reasonable plan would have gotten the patient to the 
hospital somehow.  In other words, when we try to understand even a single plan in 
isolation, we are usually implicitly comparing that plan to some set of  “reasonable 
alternatives,”  and we usually are only interested in the significant ways in which a plan 
differs from those alternatives.  [Note: this may not be true if the point of understanding a 
plan is to learn the planning domain; learning what is routine can also be quite important.] 

Implementing any of these strategies involves solving some technical problems.   One of 
the primary issues is determining the significance of one piece of information with respect to the 
overall explanation. In a rationale capture system, it would be possible to directly include 
information about significance (for example, listing those assumptions about timing, conditions, 
etc. that are most crucial for success of an operation), but it would be difficult to combine these 
assessments (for example, weather might have only a minor impact on a number of operations, 
considered individually, but the interaction between those impacts might be significant—in an 
informal system, this would be difficult or impossible to detect automatically).  In formal action 
models, significance can be formally defined and measured (in probabilistic models it is closely 
related to sensitivity analysis), but it is computationally expensive to compute (algorithms for 
probabilistic models are exponential).  If, as is likely, it proves too expensive to compute 
significance measures for plans of realistic size, then greedy heuristic approaches or 
approximation algorithms will need to be developed. 

The third strategy listed above also requires the ability to determine which parts of a 
plan are “routine,” which in turn requires some knowledge of what the set of reasonable 
alternatives is.  When comparing plans, the set of alternatives is obviously given by the plans one 
is comparing, and the problem reduces to that of measuring the significance of the differences 
between plans.  Also, in Decision Analysis (i.e. Influence Diagrams), alternatives are given 
explicitly, so the problem is again trivial.  But explicitly listing alternatives is not generally 
practical for large-scale planning, so solving this problem for explanations of a single plan 
remains an open issue.   One possible approach to this problem is to exploit the use of hierarchy 
in a hierarchical planning system, attaching approximate or vague behaviors, to high-level 
activities in the plan, which are intended to indicate “normal” behaviors for reasonable 
implementations of that activity, and using the approximations as a basis for comparison. 

Supposing these problems are solved, there still remains the issue of how much 
information to present in an explanation (as well as the larger issue of how to present 
explanations at all).  A sensible approach to choosing level of detail would be to let the 
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individual using the system decide: initially a high-level or vague explanation could be 
presented, which could then be made more detailed when and where the individual requests. 

4.4 Conclusion 

The intent of plan explanation is to aid decision makers in understanding or comparing 
complex plans, and particularly in understanding the interdependence of different parts of the 
plan—on each other, or on assumptions or conditions.  Plan explanation could be approached 
from an informal angle (by allowing or requiring decision makers to annotate parts of a plan 
with rationale explaining their choices), or formally (by using a formal action model).  In either 
approach, one of the major technical issues is filtering the amount of information presented in an 
explanation to highlight the most significant interactions and downplay or ignore the vast 
amount of insignificant detail. 

5. A Brief Survey of Explanation in Bayesian Networks 
Since we are interested in describing plans by Action Networks, which are based on 

Bayesian networks, it is appropriate to begin our study of explanation with a survey of existing 
work into explanation in Bayesian networks. 

5.1 Early History 

Much of the early work in Bayesian networks, and almost all of the work in explanation 
in Bayesian networks, has been done in the domain of medical diagnosis and decision-making.  
The impetus for explanation in Bayesian networks more or less began with the publication of 
[Teach & Shortliffe, 1981], in which the authors found that medical professionals were reluctant 
to use medical expert systems, and that the primary reason for their reluctance was a lack of 
understanding of how expert systems arrived at their conclusions. 

Bayesian networks themselves represented an improvement in presentation over raw 
statistical information.  Early work, such as [Jimison, 1980], emphasized the use of the structure 
of the network itself as a way of explaining a domain.  The intuitive nature of Bayesian networks 
(at least when they are constructed according to causal reasoning) remains a strong selling point 
for their use. 

The graphical structure of Bayesian networks only tells part of the story, however—the 
other part concerns the strength of the relationships between variables, and the complexity of 
their interactions.  Many researchers have ranked evidence variables by the strength of their 
influence on a target variable.5  The GLADYS system described in [Spiegelhalter & Knill-Jones, 
1984], for example, computes the “weight of evidence,” (which is defined to be log 
P(E|H)/P(E|¬H), where E is the evidence and H is the target variable) for each evidence variable.  
If the weight of evidence for a particular evidence variable is positive, then that evidence 
increased the probability of the hypothesis, while if it is negative, it decreased the probability.  By 
listing the evidence variables together with their individual weights, the user (the medical 
clinician) could see which evidence contributed to and which conflicted with the conclusion, and 
by how much. 

In another early research effort, [Jimison, 1980] displayed the not only the probability of 
the target variable, but the variance, allowing users of the system to see how the variance 
dropped as more evidence was entered.  Her system also showed which nodes in a network were 

                                                           
5 Early literature used the term “explanation” to refer to many different things, but by 1984, usage had largely 

stabilized to mean “how the evidence influences the diagnosis.”  



 

 

 

22

“sensitive,” where a sensitive node is one which, if the variance of its probability were reduced, 
could affect the final diagnosis (that is, change which diagnosis had the highest probability). 

5.2 Suermondt 

The most important work in explanation in Bayesian networks is unquestionably the 
dissertation work of H.J. Suermondt [Suermondt 1991, Suermondt & Cooper 1992, Suermondt 
1992].  Suermondt’s INSITE system appears to have been the first to use the graphical structure 
of the network to describe the flow of information from evidence to the target variable, at least in 
multiply-connected networks. 

Suermondt’s approach is divided into two phases: (1) identification of the most 
important evidence variables (from amongst those given), and (2) determination of the most 
influential chains of inference from evidence nodes to the target variable (the hypothesis or 
diagnosis). 

In the first phase, identification of important evidence variables, INSITE ranks the impact 
of variables on the target in a manner similar to GLADYS, but with a few differences.  One minor 
difference is that where GLADYS uses weight of evidence, INSITE uses cross-entropy.6 

Far more significant is the difference in independence assumptions.  GLADYS makes the 
simplifying assumption that evidence variables are independent given the diagnosis (which 
implies that the weight of evidence of each variable can be computed independently of other 
evidence variables).  INSITE, in contrast, acknowledges that evidence variables may be 
dependent, and therefore ranks not only individual evidence variables, but also subsets of 
evidence variables.  If E represents the total set of evidence given, let F be a subset of E, then 
Suermondt defines the cost of omission of F to be the cross-entropy between the probability of the 
hypothesis D with the entire evidence set E and the probability of D without the set of evidence 
F: H-(F) = H(P(D|E);P(D|E\F)).  By looking at both F and its complement E\F, Suermondt decides 
whether the subset of evidence F is necessary and/or sufficient to explain the change from P(D) to 
P(D|E).  Of particular interest are subsets of evidence that are necessary, sufficient, and minimal: 
no smaller set is both necessary and sufficient. 

One output of the INSITE system is a listing of minimal necessary and sufficient subsets 
of evidence, as well as an indication of conflicting evidence (which is determined as a byproduct 
of the system by identifying instances where a subset of the evidence variables creates stronger 
evidence for the hypothesis than does the full set of variables).  Suermondt notes that alone may 
be sufficient explanation, at least for domain experts, but that in many instances, more 
information about how the evidence affects the hypothesis is desired.  Thus the second phase of 
the system identifies those pathways in the network which are most important.  In a multiply-
connected network, this is difficult to define precisely.  Quoting from [Suermondt, 1991]: 

“It is tempting to view chains between nodes as channels through which information 
flows.  Most people familiar with belief networks can visualize the image of certain ‘important’ 
arcs, drawn as very thick arrows, which ‘most of the information flows,’ and others, drawn as thin 
arrows, that contribute only marginally to the transmission of evidence.  Such an image, in which 
probabilistic updates are treated analogously to electrical currents, is overly simplistic and often 
invalid, especially when there are multiple direct chains from a finding Ei to the variable of 
interest D, which can occur when the network is multiply connected.  For multiply connected 
networks, it is more difficult to determine how the evidence flows through the network. ... It is 

                                                           
6 Cross-entropy is defined as  H(P(D); P’(D)) = ∑ P(d) log (P(d)/P’(d)), where P and P’ are two different 

distributions over a space D, and the summation is over the sample space of D.  To measure the impact of an evidence 
variable E, the distributions are taken to be P(H) and P(H|E), for example.  The two measures, weight of evidence and 
cross entropy, have subtly different properties, and which is the “right” one to use seems to be the source of some debate 
in the statistical community. 
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difficult to predict definitively the combined effects of evidence transmission among multiple 
chains by analyzing the chains separately, since there are often poorly predictable interactions 
among chains.” 

The basic premise employed by Suermondt could be summarized by stating that he 
attempts to determine which chains (a chain is a complete path from an evidence node to the 
hypothesis node) are not transmitting evidence, and omits those chains from further 
consideration.  He uses two techniques to do this: first, if there is some node along a chain whose 
probability does not change significantly when the evidence is added, then that chain cannot be 
significant.  If a chain is judged significant, it can further be ranked by “cutting” it by removing 
one of the arcs in the chain (an arc that is not included in any other chain) and seeing how much 
the probability of the hypothesis is changed.  Suermondt acknowledges that this approach is 
somewhat ad hoc, but the problem of understanding flow in multiply-connected networks is a 
difficult one. 

5.3 Other Research 

Citing evidence that humans are not particularly adept at probabilistic reasoning, 
[Henrion & Druzdzel, 1991], in work contemporary with Suermondt’s work, seek to find forms 
of explanation that more closely resemble human reasoning.  This leads them to using linguistic 
terms such as “highly probable” in place of numeric probabilities, and to emphasizing the 
necessity that models be structured to follow causality.  They also suggest two techniques for 
generating explanations which are intended to follow human modes of reasoning. 

The first is qualitative belief propagation, based on Wellman’s qualitative reasoning model 
[Wellman, 1988].  (According to this model, the qualitative relationship between two variables is 
positive if, under all conditions, increasing the probability of one variable increases the 
probability of the other, and negative if, under all conditions, decreasing the probability of one 
increases the probability of the other; if neither condition holds, the relationship cannot be 
described qualitatively.)  The basic idea is that if all the relationships in a network can be 
described qualitatively, then an explanation for the flow of evidence in a network can be given 
by tracing its qualitative path to the target variable.  (The original paper described propagation in 
singly-connected networks; in [Druzdzel & Henrion, 1993] they extended the technique to 
multiply-connected networks).  The restriction that all relationships be qualitative is a strong one, 
but many natural relationships do fall into this category (they particularly cite the NOISY-OR 
relationship, commonly used as a prototypical relationship for causal modeling). 

The second explanation technique is based on scenario generation.  The idea is to choose a 
few of the most likely scenarios (a scenario is an assignment to all relevant variables), and list 
them with their probabilities.  Generally, there would be exponentially many possible scenarios, 
but Henrion and Druzdzel point out that often the few most probable scenarios contain most of 
the probability mass, giving a good overall picture of the possible cases. This technique can also 
display conflict, since some scenarios may disagree about the state of the target variable. 

In more recent work, [Haddawy, et al.., 1997] describes a system called BANTER, which 
is intended for tutoring medical students.  BANTER is largely based on Suermondt’s INSITE 
system.  BANTER adds verbal phrases to describe the relationships between variables; for 
example “X causes Y” or “X is detected by Y.”  These phrases are then used to construct natural 
language explanations which follow the chains of evidence flow (interestingly, unlike other 
researchers who have regarded the graphical structure of a Bayesian network as part of the 
explanatory power of their system, Haddawy, et al.., explicitly point out that the Bayesian 
network is hidden from the user—“In fact, nothing in the way the system interacts with the user 
would even indicate that the system is using a Bayesian network to perform its reasoning.”)  
There are several other minor differences between INSITE and BANTER—for example, BANTER 
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is concerned with determining which is the single next best test to perform, which leads them to 
revert to importance tests on single variables only (but conditioned on any evidence already 
present), and only for sufficiency, unlike INSITE’s subset tests for both sufficiency and necessity.  
BANTER also handles non-binary variables by generalizing the measure of influence to be 
“positive”, “negative” or “mixed”, and can rank evidence by strength of influence in each 
category. 

[Madigan, et al., 1997] presents another explanation system, but with the emphasis 
definitely on graphical visualization of information.  As in previous research, Madigan, et al., are 
concerned with tracing the flow of influence from evidence to target variable through chains in 
the network.  They display the strength of the relationship along arcs in the network by drawing 
the arc with two widths: the outer width indicating the maximum possible strength of 
information flow between variables (if one of the variables were instantiated directly, for 
example), and the inner width indicating the actual strength of the information actually flowing 
through the arc.  They use color to indicate the direction of the relationship: blue for positive, red 
for negative.  They solve the dependence problem by asserting an ordering to the evidence 
variables: the strength influence of evidence variables is not determined in isolation, but rather is 
conditioned on the evidence variables previously established (they provide a facility for 
reordering evidence variables so the user can explore their interdependencies). 

The most significant technical aspect of Madigan, et al.’s approach is the way in which 
they define chains in multiply-connected networks.  They prove that in a class of networks called 
Berge networks, which include some multiply-connected networks, a single chain is sufficient to 
completely explain the impact of evidence on the target node.  When a network is not a Berge 
network, they allow the user to collapse variables until a Berge network has been created.  In the 
collapsed network, single variables will be tuples of variables from the original network, which 
could make the explanation unwieldy, but it is better than collapsing the network until it is 
singly connected, and unlike previous work, the technique is sound. 

5.4 Commentary 

We are interested in explanation of plans, especially large-scale plans, rather than 
diagnostic networks.  How would this affect the kinds of techniques discussed above? 

The first apparent distinction is that diagnostic problems are represented by Bayesian 
networks, whereas decision problems are commonly represented by influence diagrams, which 
introduce choices and utilities into the model.  However this difference is not really significant: 
[Shachter & Peot, 1992] shows a technique for  a transforming an influence diagram into an 
equivalent Bayesian network.  Moreover, if a particular plan or policy is given, then the 
algorithm for tracing the influence from decisions to utilities in that plan is identical to the 
algorithm for tracing the influence from evidence to hypotheses in a Bayesian network. 

Explanation in diagnostic systems has generally been interpreted to mean explaining 
only one thing: the shift in probability of a target variable in response to the addition of evidence.  
In planning, we may be interested in shifts of probability, or we may be interested in shifts of 
utility (or more generally, in any measure of plan quality).  And instead of adding evidence, we 
are more likely to be interested in comparing different plans, or hypothesizing different 
situations.  This difference is also superficial, however: the techniques used in explanation of 
evidence in diagnosis really only depend on comparing two differing probability distributions; 
whether they differ because the evidence has changed, or because plans are different, is 
immaterial.  (This does assume that measures of plan quality can be interpreted as utility models 
(that is, as preferences over outcomes); if this is not the case, then the situation may well be more 
difficult.) 
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More fundamental concerns are the adequacy of the modeling language presented by 
Bayesian networks, the appropriateness of the independence assumptions used in measuring 
strength of impact, and scalability. 

Bayesian networks provide a “flat” description of a domain, where planning is almost 
always thought of as a hierarchical process, wherein certain decisions or activities are carried out 
subordinate to other higher-level decisions or activities.  For an explanation system to be useful, 
it will be necessary to take hierarchy into account.  There are currently several researchers 
investigating the incorporation of hierarchy into probabilistic models, but this is preliminary 
work, and at present we are unaware of anyone who has attempted bring explanation into the 
picture. 

If used, the assumption that evidence variables (or more generally, any variables of 
interest) have independent effects on the target variable (or utility measure), will have to be 
justified in planning domains.  A priori, it seems that there will be some situations in which it is 
justified (for example, the monetary cost of a plan is simply the sum of the independent cost of its 
parts) but many others in which it is not (for example, .scheduling decisions that are made both 
to accomplish a particular goal and to avoid conflict with other goals—the very foundation of AI 
planning has been that such interactions are unavoidable).  If we cannot justify this assumption, 
then we will have to use something like Suermondt’s cost of omission measure over subsets of 
variables; the difficulty with this measure is that the number of subsets increases exponentially 
with the number of variables, which leads quickly to intractability.  (In the next section, we 
describe a heuristic approach to this problem.) 

Finally, the issue of scalability in general: the diagnostic models used for explanation in 
research in the literature have typically been small, on the order of tens of nodes, whereas the 
kinds of plans we anticipate seeing are much larger.  Except for the techniques of Henrion and 
Druzdzel, every algorithm in this section is exponential (or doubly-exponential), and thus 
straight-forward application to larger systems will simply not be tractable.  Moreover, even if the 
techniques were computationally adequate, the explanations generated would be in danger of 
becoming incomprehensible.  In order to address this issue, new techniques or heuristic 
approximations to existing techniques will need to be found.  In the long term, one of the most 
promising avenues of attack is to make use of the hierarchy in a hierarchical plan, using the 
higher levels of abstraction to “shrink” the size of the model whenever doing so does not lose too 
much information. 
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